CS 267 Applications of Parallel Computers
Lecture 12:

Floating Point Arithmetic

David H. Bailey

Based on previous notes by James
Demmel and Dave Culler

http://lwww.nersc.gov/~dhbailey/cs267

Outline

° A little history

° IEEE floating point formats

° Error analysis

> Exception handling

° How to get extra precision cheaply

° Cray arithmetic - a pathological example

° Dangers of parallel and heterogeneous computing

Floating Point Arithmetic: A Little History

1947: Von Neumann and Goldstine:

“Can’t expect to solve most big [n>15] linear systems without carrying
many decimal digits, otherwise the computed answer would be
completely inaccurate.” (wrong)

1949: Turing mentions principle of backward error analysis (BEA):

“Carrying d digits is equivalent to changing the input data in the d-th place
and then solving Ax=b. So if A is only known to d digits, the answer is as
accurate as the data deserves.”

1961: BEA rediscovered and publicized by Wilkinson.

1960s: Numerous papers presented with BEA results for various
algorithms.

1960s-1970s: Each computer handled FP arithmetic differently:
 Format, accuracy, rounding mode and exception handling all differed.
* It was very difficult to write portable and reliable technical software.

1982: IEEE-754 standard defined. First implementation: Intel 8087.

1989: ACM Turing Award given to W. Kahan of UCB for design of the
IEEE floating point standards.

2000: IEEE FP arithmetic is now almost universally implemented in
general purpose computer systems.

Defining Floating Point Arithmetic

° Representable numbers:

Scientific notation: +/-d.d...d x rexP

sign bit +/-

radix r (usually 2 or 10, sometimes 16)
significand d.d...d (how many base-r digits d?)
exponent exp (range?)

others?

° Operations:

arithmetic: +,-,x,/,... How is result rounded to fit in format?
comparison (<, =, >)

conversion between different formats - short to long FP numbers, FP to
integer, etc.

exception handling - what to do for 0/0, 2*largest_number, etc.
binary/decimal conversion - for I/O, when radix is not 10.

° Language/library support is required for all these operations.

IEEE Floating Point Arithmetic Standard 754 - Normalized Numbers

° Normalized Nonzero Representable Numbers: +-1.d...d x 2¢xp
- Macheps = Machine epsilon = 2-#significand bits _ (o |ative error in each operation
« OV = overflow threshold = largest number
* UN = underflow threshold = smallest number

Format # bits #significand bits macheps #exponent bits exponent range

Single 32 23+1 224 (~107) 8 2126 . 2127 (~10*-38)
Double 64 52+1 2-53 (~10-16) 11 2-1022 _ 21023 (~10Q*-308)
Double >=80 >=64 <=264(~10-19) >=15 2-16382 _ 216383 (1 (+-4932)

Extended (80 bits on all Intel machines)

° +-Zero: +-, significand and exponent all zero
* Why bother with -0 later

normalized normalized
negative positive
numbers numbers

IEEE 64-bit Floating-Point Format

° Bit 0: sign of entire number.

° Bits 1-11: exponent, offset by 2*10.

° Bits 12-63: mantissa.

°+0 and -0 are represented differently.

° For normalized nonzero data, a “1” is assumed
hidden at the start of mantissa, so there are a total of
53 mantissa bits.

> Approximate decimal exponent range: 10-393 to 10303,
> Approximate decimal accuracy: 16 digits.

° Largest whole number that can be represented
exactly: 253 =9.0072 x 1075,

IEEE Accuracy Rules

° Take the exact value, and round it to the nearest
floating point number (correct rounding).

° Break ties by rounding to nearest floating point
number whose bottom bit is zero (rounding to
nearest even).

° Other rounding options also available (up, down,
towards 0).

° Don’t need exact value to do this!
- Early implementors worried it might be too expensive, but it isn’t.

° Applies to
« +,-* /[sqrt, conversion between formats.
* rem(a,b) = remainder of a after dividing by b.
- a=qg*b +rem, q = floor(a/b)
- cos(x) = cos(rem(x,2*pi)) for |x| >= 2*pi
- cos(x) is exactly periodic, with period rounded(2*pi)

Error Analysis

° Basic error formula
* fl(a op b) = (a op b)*(1 + d) where
- op one of +,-,*,/
- |d| <= macheps
- assumes no overflow, underflow, or divide by zero.

° Example: adding 4 numbers
o fl(x1+x2#x3+xX4) = {[(X1+X2)*(1+d1) + x3]*(1+d2) + Xx4}"(1+d3)
= x1*(1+d)*(1+d2)*(1+d3) + x2*(1+d1)*(1+d2)*(1+d3)
+ x3*(1+d2)*(1+d3) + x4"(1+d3)
= x1*(1+eq) + x2"(1+e2) + x3*(1+e3) + x4*(1+e4)
where each |ej| <~ 3*macheps
* Result is exact sum of slightly changed summands x;*(1+e;).

- Backward Error Analysis - an algorithm called numerically stable if it
gives the exact result for slightly changed inputs.

* Numerical stability is a fundamental algorithm design goal.

Example: Polynomial Evaluation using Horner’s Rule

n
° Use Horner’s rule to evaluate p = X ¢, * x
» Set p = ¢, then for k=n-1 downto d(,_get p =Xx*p + ¢,

> Apply to (x-2)° = x° -18*x® + ... - 512.

° Error plot:

1.5

D5

-1

I I I I I I I
1.82 1.84 1.86 1.88 2 2.02 2.04 2.06 2.08

Example: Polynomial Evaluation (continued)
°(x-2)°=x%-18*x8 + ... - 512

> We can compute error bounds using
 fl(a op b)=(a op b)*(1+d)

-
Ll 16

e e T a1 } |
T e . actual number of :

! E 3 e c:orrectcji H C P R ¥4
0.8 ,:l 14_.. L :-. P - iR e

: : : : : |
|
'

_pperbound T

s

]
i

/
1

i ; ; ; i d : : :
LEs L9 193 2 203 21 218 o = 5 i

Exception Handling

° What happens when the “exact value” is not a real
number, or too small or too large to represent
accurately?

° Five exceptions:
Overflow - exact result > OV, too large to represent.

Underflow - exact result nonzero and < UN, too small to represent.
Divide-by-zero - nonzero/0.

Invalid - 0/0, sqrt(-1), ...

Inexact - you made a rounding error (very common!).

° Possible responses
» Stop with error message (unfriendly, not default).
» Keep computing (default, but how?).

IEEE FP Arithmetic Standard 754: Denorms

° Denormalized Numbers: +-0.d...d x 2min_exp
« Sign bit, nonzero significand, minimum exponent.
 Fills in gap between UN and 0.

° Underflow Exception
* Occurs when exact nonzero result is less than underflow threshold UN.
« Ex: UN/3.
* return a denorm, or zero.

° Why bother?

* Necessary so that following code never divides by zero .
if (a 1= b) then x = a/(a-b)

2-126 55 2127*(2_2—23) ”
126 underflow overflow

normalized denormalized normalized
negative numbers positive
numbers numbers

IEEE FP Arithmetic Standard 754: +- Infinity

° +- Infinity: Sign bit, zero significand, maximum exponent.

° Overflow Exception
« Occurs when exact finite result too large to represent accurately.
« Ex: 2*OV.
* return +- infinity.

° Divide by zero Exception
 return +- infinity = 1/+-0.
» sign of zero important!

° Also return +- infinity for
« 3+infinity, 2*infinity, infinity*infinity.
* Result is exact, not an exception!

IEEE FP Arithmetic Standard 754: NAN (Not A Number)

° NAN: Sign bit, nonzero significand, maximum exponent.

° Invalid Exception
* Occurs when exact result not a well-defined real number.
« 0/0.
« sqrt(-1)
* infinity-infinity, infinity/infinity, 0*infinity.
 NAN + 3.
* NAN > 3?
* Return a NAN in all these cases.

° Two kinds of NANs

* Quiet - propagates without raising an exception.

« Signaling - generate an exception when touched (good for detecting
uninitialized data).

Exception Handling User Interface

Each of the 5 exceptions has the following features:

° A sticky flag, which is set as soon as an exception
occurs.

° The sticky flag can be reset and read by the user:

- reset overflow_flag and invalid_flag.
» perform a computation.
 test overflow_flag and invalid_flag to see if any exception occurred.

° An exception flag, which indicate whether a trap
should occur:

Not trapping is the default.

Instead, continue computing returning a NAN, infinity or denorm.

On a trap, there should be a user-writeable exception handler with access
to the parameters of the exceptional operation.

Trapping or “precise interrupts” like this are rarely implemented for
performance reasons.

Exploiting Exception Handling to Design Faster Algorithms

(o}

Paradigm:

1) Try fast, but possibly “risky” algorithm.
2) Quickly test for accuracy of answer (use exception handling).
3) In rare case of inaccuracy, rerun using slower “low risk” algorithm.

(o]

Quick with high probability (ie avoid branches):

« Assumes exception handling done quickly.

Ex 1: Solving triangular system Tx=b.
« Part of BLAS2 - highly optimized, but risky.

* If T “nearly singular”, expect very large x, so scale inside inner loop:
slow but low risk.

« Use paradigm with sticky flags to detect nearly singular T.
* Up to 9x faster on Dec Alpha.

(o]

Ex 2: Computing eigenvalues, up to 1.5x faster on CM-5.
Fork=1ton For k=1ton

d=ag-s - bx?/d vS. d=ay-s-bg2/d ...ok to divide by 0

if |d| < tol, d = -tol count += signbit(d)
if d <0, count++

° Demmel/Li (www.nersc.gov/~xiaoye)

Summary of Values Representable in IEEE FP

°+-Zero

° Normalized nonzero numbers
° Denormalized numbers

° +-Infinity

> NANs

» Signaling and quiet
« Many systems have only quiet

10...0

+

anything

nonzero

nonzero

[e]

(o]

(o]

(o]

(o]

[e]

High Precision Arithmetic
What if 64 or 80 bits is not enough?

* Very large problems on very large machines may need more.
« Sometimes only known way to get right answer (example: mesh generation).
« Sometimes you can trade communication for extra precision.

High precision can be simulated efficiently using standard FP ops.

Each extended precision number s is represented by an array
(s1,82,..-,Sn) Where:

 each s, is a FP number
s s=s,+s,+... +s, in exact arithmetic
¢« §,>>8,>> ... >>s,

Ex: Computing (s1,s2) =a+b
« if |al<|b], swap them
« sq=atb ... roundoff may occur
« spg=(a-sq)+b ... noroundoff!
» s4 contains leading bits of a+b, sy contains trailing bits

Current effort to define double-double BLAS this way:

« www.netlib.org/cgi-bin/checkout/blast/blast.pl

Can be extended to arbitrary precision:
* Priest / Shewchuk (www.cs.berkeley.edu/~jrs)

Techniques for Very High Precision Arithmetic

° Represent data as strings of integer or FP data.

° First few words define length, sign and exponent; followed by
mantissa words.

o

Use standard arithmetic algorithms, but base 2224, 2232 or
2753, instead of base 10. Base 100 example:

(22, 33, 44) x (55, 66, 77) = (1210, 3267, 6292, 5445, 3388)
= (12, 43, 30, 46, 78, 88) after release of carries starting at end.
For very high precision (> 1000dp), use FFTs for multiplication:

A x B =FFT-' (FFT(A,0) x FFT(B,0)) (ie linear convolution)

where (A,0) means append n words of zeroes to the n-word
mantissa.

“Quadratically convergent” algorithms (each iteration
approximately doubles number of accurate digits) are known
for sqrt(x), pi, e*x, cos(x), and other transcendental functions.

Bailey’s High Precision Software

° Double-double package:
 Double-double data is represented as pairs of 64-bit FP numbers.
« Uses IEEE arithmetic tricks mentioned on previous slide.
« Real and complex datatypes, also sqrt, cos, e”x, etc.

* Declare DD variables with a Fortran-90 type statement, and the
proper routines from the library are automatically called whenever
any of these variables appears in an expression.

« A C++ interface and a quad-double package are in the works.

° Multiprecision package:
* Provides an arbitrarily high precision level.
 Uses FFTs and other advanced algorithms where appropriate.
* Fortran-90 interface permits very easy conversion of Fortran.
« C/C++ version is also available.

° More info: www.nersc.gov/~dhbailey

Cray Arithmetic

° Historically very important
* Crays among the fastest machines.
» Other fast machines emulated it (Fujitsu, Hitachi, NEC).

° Sloppy rounding
» fl(a + b) not necessarily (a + b)(1+d) but instead.
fl(a + b) = a*(1+d,) + b*(1+d,) where |d;],|d,| <= macheps

* This means that fl(a+b) could be either 0 when should be nonzero, or
twice too large when a+b “cancels”.

» Sloppy division too.

° Some impacts:
 arccos(x/sqrt(x2 + y2)) can yield exception, because x/sqrt(x2 + y2) >1
 mod (a, b) sometimes greater than b.
- Best available eigenvalue algorithm fails.
- Need Il (ak - bx) accurately.
- Need to preprocess by setting each ag = 2*a, - a, (kills bottom bit).

° Most Cray (=SGI) systems now incorporate IEEE arithmetic.

Hazards of Parallel and Heterogeneous Computing

What new bugs arise in parallel floating point
programs?

° II:'Iazc?rd #1: Non-repeatability - makes debugging very
ard.

° Hazard #2: Different exception handling - may cause
program to hang.

° Hazard #3: Different rounding (even on IEEE FP
machines) - may result in strange errors.

See www.netlib.org/lapack/lawns/lawn112.ps

Hazard #1: Nonrepeatability due to Nonassociativity

° Consider s= all_reduce(x,”sum”) =x1+x2 + ... + xp

°> Answer depends on order of FP evaluation:
» All answers differ by at most p*macheps*(|x1| + ... + |xp])
« Some orders may overflow/underflow, others not!

° How can order of evaluation change?
« Change number of processors.

* In reduction tree, have each node add first available child sum to
its own value - order of evaluation depends on race condition,
which is unpredictable!

° Options
» Live with it, since difference likely to be small.

» Build slower version of all_reduce that guarantees evaluation
order independent of #processors, to use for debugging.

« Use double-double arithmetic to guarantee repeatable answer --
see He/Ding paper, “Using Accurate Arithmetics to improve
Numerical Reproducibility and Stability in Parallel Applications”.
URL: http://www.nersc.gov/research/SCG/ocean/NRS

Hazard #2: Heterogeneity: Different Exception Defaults

° Not all processors implement denorms fast:
« DEC Alpha 21164 in “fast mode” flushes denorms to zero:
- in fast mode, a denorm operand causes a trap.

- slow mode, to get underflow right, slows down all
operations significantly, so rarely used.

 SUN Ultrasparc in “fast mode” handles denorms correctly:
- handles underflow correctly at full speed.
- flushing denorms to zero requires trapping, slow.

° Imagine a NOW built of DEC Alphas and SUN
Ultrasparcs:

» Suppose the SUN sends a message to a DEC containing a
denorm: the DEC will trap.

» Avoiding trapping requires running either DEC or SUN in slow
mode.

 Good news: most machines are converging to fast and correct
underflow handling.

Hazard #3: Heterogeneity: Data Dependent Branches

° Mixed Cray/IEEE machines may round differently.

° Different “IEEE machines” may round differently:
 Intel uses 80 bit FP registers for intermediate computations
« IBM RS6K has MAC = Multiply-ACcumulate instruction
- d=a*b+c with one rounding error, i.e. a*b good to 104 bits
» SUN has neither “extra precise” feature.
 Different compiler optimizations may round differently (yuck).

° Impact: same expression can yield different values on different
machines.

or
s = reduce_all(x,min)
if (s > 0) then
compute and return a
else
communicate
compute and return b
end

{Compute s redundantly

° Taking different branches can yield nonsense, or deadlock.

Further References on Floating Point Arithmetic

° Notes for Prof. Kahan’s CS267 lecture from 1996

 www.cs.berkeley.edu/~wkahan/ieee754status/cs267fp.ps
* Note for Kahan 1996 cs267 Lecture

° Prof. Kahan’s “Lecture Notes on IEEE 754"

 www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps

° Prof. Kahan’s “The Baleful Effects of Computer
Benchmarks on Applied Math, Physics and
Chemistry

 www.cs.berkeley/~wkahan/ieee754status/baleful.ps

° Notes for Demmel’s CS267 lecture from 1995

 www.cs.berkeley.edu/~demmel/cs267/lecture21/lecture21.html

